Dispersion reduction of artillery rockets guided by flight path steering method

Author:

Mandić S.

Abstract

ABSTRACTArtillery rockets are sensitive to disturbances (total impulse variation, wind, thrust misalignment, etc.). As the range of ground-to-ground rockets increases, the accuracy of free flight rockets decreases. Requirements for the increase of the range and minimisation of the impact point dispersions can be solved by adding guidance and control systems to rockets. Based on the differences between the measured flight parameters and the calculated parameters for the nominal trajectory, the flight path angle correction algorithm is obtained by adding the correction to the nominal value. The flight path steering guidance system with lateral acceleration autopilot in the inner loop, is used for the guidance of hypothetical artillery rockets. The guidance algorithm given in this paper eliminates the time correction due to rocket velocity variations. Efficiency of the proposed algorithm is illustrated by numerical simulation. There is no practical influence of the external disturbances on impact point dispersion. It is also shown that the measurement errors of the inertial measurement unit are the dominant factor affecting impact point dispersion of artillery rockets modified by adding a guidance system based on the flight path steering method.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference17 articles.

1. IEEE Std 1293-1996, IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-axis, Nongyroscopic Accelerometers, 1996, The Institute of Electrical and Electronics Engineers, New York, US.

2. IEEE Std 528-1994, IEEE Standard for Inertial Sensor Terminology, 1994, The Institute of Electrical and Electronics Engineers, New York, US.

3. Gamble A.E. and Jenkins P.N. Low cost guidance for the Multiple Launch Rocket System (MLRS) artillery rocket, IEEE AES System Magazine, January 2001.

4. Six Degrees of Freedom Inertial Sensor ADIS16360/16365, ANALOG DEVICES

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3