Author:
Cuevas Antonio,Rodríguez-Casal Alberto
Abstract
We consider the problem of estimating the boundary of a compact set S ⊂ ℝ
d
from a random sample of points taken from S. We use the Devroye-Wise estimator which is a union of balls centred at the sample points with a common radius (the smoothing parameter in this problem). A universal consistency result, with respect to the Hausdorff metric, is proved and convergence rates are also obtained under broad intuitive conditions of a geometrical character. In particular, a shape condition on S, which we call expandability, plays an important role in our results. The simple structure of the considered estimator presents some practical advantages (for example, the computational identification of the boundary is very easy) and makes this problem quite close to some basic issues in stochastic geometry.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献