Abstract
ABSTRACTAir-breathing propulsion has the potential to decrease the cost per kilogram for access-to-space, while increasing the flexibility of available low earth orbits. However, to meet the performance requirements, fuel-air mixing inside of scramjet engines and thermal management still need to be improved.An option to address these issues is to use intrinsically generated vortices from scramjet inlets to enhance fuel-air mixing further downstream, leading to shorter, less internal drag generating, and thus more efficient engines. Previous works have studied this vortex-injection interaction numerically, but validation was impractical due to lack of published experimental data. This paper extends upon these previous works by providing experimental data for a canonical geometry, obtained in the T4 Stalker Tube at Mach 8 flight conditions, and assesses the accuracy of numerical methodologies such as RANS CFD to predict the vortex-injection interaction.Focus is placed on understanding the ability of the numerical methodology to replicate the most important aspects of the vortex-injection interaction. Results show overall good agreement between the numerical and experimental results, as all major features are captured. However, limitations are encountered, especially due to a localised region of over predicted heat flux.
Publisher
Cambridge University Press (CUP)
Reference43 articles.
1. 9. Khang, W. C. Y. (2012). Effects of flow non-uniformities on the drag reduction by boundary layer combustion. PhD Thesis, School of Mechanical and Mining Engineering, Centre for Hypersonics, The University of Queensland.
2. 30. Schultz, D. and Jones, T. (1973). Heat-Transfer Measurements in Short-Duration Hypersonic Facilities, AGARD-AG-165, North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development.
3. Transition of compressible high enthalpy boundary layer flow over a flat plate
4. Physical and Computational Aspects of Convective Heat Transfer
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献