Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode–ruminant interactions as a case study

Author:

Grenfell B. T.,Wilson K.,Isham V. S.,Boyd H. E. G.,Dietz K.

Abstract

SUMMARYThe characteristically aggregated frequency distribution of macroparasites in their hosts is a key feature of host–parasite population biology. We begin with a brief review of the theoretical literature concerning parasite aggregation. Though this work has illustrated much about both the sources and impact of parasite aggregation, there is still no definitive analysis of both these aspects. We then go on to illustrate the use of one approach to this problem – the construction of Moment Closure Equations (MCEs), which can be used to represent both the mean and second moments (variances and covariances) of the distribution of different parasite stages and phenomenological measures of host immunity. We apply these models to one of the best documented interactions involving free-living animal hosts – the interaction between trichostrongylid nematodes and ruminants. The analysis compares patterns of variability in experimental infections of Teladorsagia circumcincta in sheep with the equivalent wildlife situation – the epidemiology of T. circumcincta in a feral population of Soay sheep on St Kilda, Outer Hebrides. We focus on the relationship between mean parasite load and aggregation (inversely measured by the negative binomial parameter, k) for cohorts of hosts. The analysis and empirical data indicate that k tracks the increase and subsequent decline in the mean burden with host age. We discuss this result in terms of the degree of heterogeneity in the impact of host immunity or parasite-induced mortality required to shorten the tail of the parasite distribution (and therefore increase k) in older animals. The model is also used to analyse the relationship between estimated worm and egg counts (since only the latter are often available for wildlife hosts). Finally, we use these results to review directions for future work on the nature and impact of parasite aggregation.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3