Molecular characterization of Theileria parasites: application to the epidemiology of theileriosis in Zimbabwe

Author:

Bishop R. P.,Spooner P.R.,Kanhai G. K.,Kiarie J.,Latif A. A.,Hove T.,Masaka S.,Dolan T. T.

Abstract

Forty Theileria schizont-infected lymphocyte culture isolates from Zimbabwe were characterized using a panel of antischizont monoclonal antibodies (MAbs) and 4 Theileria parva DNA probes containing cloned extrachromosomal element, Tpr repetitive, ribosomal and telomeric sequences. The Theileria isolates were assigned as T. parva or T. taurotragi on the basis of reactivities with MAbs and restriction fragment length polymorphisms (RFLPs) detected using the extra chromosomal element probe. Cattle-derived T. parva isolates were relatively homogeneous on the basis of reactivities with MAbs and RFLPs detected using Tpr repetitive and ribosomal DNA probes. In contrast to previous results from Kenya, most of the cattle-derived isolates from Zimbabwe exhibited very similar Tpr restriction fragment patterns, although the Tpr genotypes of buffalo-derived isolates were heterogeneous. This suggests that selection for a particular Tpr genotype may be occurring in cattle. Many isolates with similar Tpr genotypes were differentiated by RFLPs detected using the telomeric DNA probe. The T. parva Boleni immunizing stock was distinguished from all other isolates by telomeric RFLPs. The T. parva Boleni Tpr repetitive DNA probe cross-hybridized with T. taurotragi DNA and detected RFLPs between different T. taurotragi isolates.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference39 articles.

1. Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission;Bailey;Bulletin of Epizootic Diseases of Africa,1960

2. Infection of mammalian cells with Theileria species

3. Cryopreservation of infective particles of Theileria parva

4. A new mouse myeloma cell line that has lost immunoglobulin expression but permits construction of antibody secreting hybrid cell lines;Kearney;Journal of Immunology,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3