Plasmodium falciparumookinete invasion of the midgut epithelium ofAnopheles stephensiis consistent with the Time Bomb model

Author:

BATON L. A.,RANFORD-CARTWRIGHT L. C.

Abstract

Plasmodium falciparumgametocytes grownin vitrowere fed through membrane feeders to laboratory-rearedAnopheles stephensimosquitoes. Intact midguts, including entire bloodmeal contents, were removed between 24 and 48 h post-bloodfeeding. Giemsa-stained histological sections were prepared from the midguts and examined by light microscopy. Contrary to previous reports, ookinetes were clearly visible within midgut epithelial cells, demonstrating intracellular migration across the midgut wall. Ookinetes entered epithelial cells through the lateral apical membrane at sites where 3 adjacent cells converged. There was no evidence for the existence of a morphologically distinct group of epithelial cells preferentially invaded by ookinetes. However, ookinete penetration was associated with significant morphological changes to invaded cells, including differential staining, condensation and fragmentation of the nucleus, vacuolization, loss of microvilli and various degrees of extrusion into the midgut lumen. Epithelial cells completely separated from the midgut wall were found within the midgut lumen. These cells were associated with invading parasites suggesting that ookinete penetration resulted in complete ejection of invaded cells from the midgut wall. Small clusters of morphologically altered midgut cells and invading parasites spanning the membranes of adjacent abnormal epithelial cells were observed, consistent with intracellular movement of ookinetes between neighbouring midgut cells. Extruded epithelial cells were also observed rarely in uninfected midguts. Epithelial cell extrusion, therefore, may be a general mechanism of tissue repair through which damaged cells are removed from the midgut wall rather than a parasite-specific response. These observations demonstrate that human malaria parasite infection of mosquitoes is consistent with, and provides further support for, the Time Bomb model of ookinete invasion of the mosquito midgut epithelium previously proposed for rodent malaria parasites.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

Reference47 articles.

1. Complete in vitro maturation of Plasmodium falciparum gametocytes

2. REICHENOW, E. (1932).Die Entwicklung von Proteosoma circumflexum in Theobaldia annulata nebst Beobachtungen über das Verhalten anderer Vogelplasmodien in Mücken.Jenaische Zeitschrift für Medizin und Naturwissenschaft 67,443–451.

3. Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti

4. Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells

5. ZAR, J. H. (1984). Biostatistical Analysis ,3rd Edn. Prentice-Hall,Englewood Cliffs, New Jersey.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3