Mechanisms of survival of protozoan parasites in mononuclear phagocytes

Author:

Mauel J.

Abstract

SUMMARYThe understanding of the mechanisms whereby intracellular parasites counteract the microbicidal processes of macrophages has progressed considerably in recent years. Various factors contribute to intracellular parasite destruction; from a biochemical standpoint, particularly important is the oxidative burst triggered by phagocytosis and by macrophage ‘activation’, that leads to the generation of toxic metabolites of oxygen. At the ultrastructural level, fusion of the parasitophorous vacuole with surrounding lysosomes appears to be a pre-requisite for the final digestion and elimination of the infecting microorganisms. The counter-measures evolved by microorganisms to escape intracellular destruction are best illustrated by studiesin vitroon the interaction of parasites of theLeishmania, ToxoplasmaandTrypanosomaspp. with mononuclear phagocytes. Some microbes are able to inhibit the fusion of phagosomes with lysosomes, thus avoiding the potentially harmful action of lysosomal hydrolases. Other microorganisms are able to resist the effects of such enzymes, perhaps by secreting inhibitory substances. Others still avoid lysosomes by leaving the phagocytic vacuole, to reach the cytoplasmic matrix where their development is unhindered. Particularly critical is the capacity of certain parasites to subvert the lethal effects of the oxidative burst. This can be achieved either by failing to evoke this metabolic response, or by producing scavengers that can detoxify harmful oxygen metabolites. Intracellular death or survival will thus depend on a delicate balance between the potency of macrophage cidal mechanisms, and the efficacy of the protective measures evolved by the infecting agents.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3