Resistance to Degradation of Resin-Dentin Bonds Produced by One-Step Self-Etch Adhesives

Author:

Toledano Manuel,Cabello Inmaculada,Yamauti Monica,Giannini Marcelo,Aguilera Fátima S.,Osorio Estrella,Osorio Raquel

Abstract

AbstractThe objective of this article is to evaluate the resistance to degradation of resin-dentin bonds formed with three one-step adhesives. Flat, mid-coronal dentin surfaces were bonded with the self-etching adhesives [Tokuyama Bond Force (TBF), One Up Bond F Plus (OUB), and G-Bond (GB)]. The bonded teeth were subjected to fatigue loading, chemical degradation, and stored in distilled water for four time periods (up to 12 months). Specimens were tested for microtensile bond strength and microleakage. Fractographic analysis was performed by scanning electron microscopy. Bonded interfaces were examined by light microscopy using Masson's trichrome staining. An atomic force microscope was employed to analyze phase separation and surface nanoroughness (Ra) at the polymers. Vickers microhardness and the degree of the conversion (DC) were also determined. ANOVA and multiple comparisons tests were performed. Bond strength significantly decreased after the chemical challenge, but not after load cycling. Aging decreased bond strength after 6 months in TBF and GB, in OUB after 12 months. An increase of the nonresin protected collagen zone occurred in all groups, after storing. TBF showed the highest roughness, microhardness, and DC values, and GB showed the lowest. Mild self-etch one-step adhesives (TBF/OUB) showed a higher degree of cure, lower hydrophilicity, and major resistance to degradation of resin-dentin bonds when compared to highly acidic self-etching adhesive (GB).

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3