Quantification of Ion-Implanted Single-Atom Dopants in Monolayer MoS2 via HAADF STEM Using the TEMUL Toolkit

Author:

Hennessy Michael1ORCID,O'Connell Eoghan N1,Auge Manuel2,Moynihan Eoin1,Hofsäss Hans2,Bangert Ursel1

Affiliation:

1. Bernal Institute, School of Natural Sciences, University of Limerick Department of Physics, , Limerick, Ireland

2. II. Institute of Physics, University of Göttingen , 37077 Göttingen, Germany

Abstract

Abstract In recent years, atomic resolution imaging of two-dimensional (2D) materials using scanning transmission electron microscopy (STEM) has become routine. Individual dopant atoms in 2D materials can be located and identified using their contrast in annular dark-field (ADF) STEM. However, in order to understand the effect of these dopant atoms on the host material, there is now the need to locate and quantify them on a larger scale. In this work, we analyze STEM images of MoS2 monolayers that have been ion-implanted with chromium at ultra-low energies. We use functions from the open-source TEMUL Toolkit to create and refine an atomic model of an experimental image based on the positions and intensities of the atomic columns in the image. We then use the refined model to determine the likely composition of each atomic site. Surface contamination stemming from the sample preparation of 2D materials can prevent accurate quantitative identification of individual atoms. We disregard atomic sites from regions of the image with hydrocarbon surface contamination to demonstrate that images acquired using contaminated samples can give significant atom statistics from their clean regions, and can be used to calculate the retention rate of the implanted ions within the host lattice. We find that some of the implanted chromium ions have been successfully integrated into the MoS2 lattice, with 4.1% of molybdenum atoms in the transition metal sublattice replaced with chromium.

Funder

Volkswagen Foundation

Irish Research Council

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3