Minimizing Motion Artifacts in Intravital Microscopy Using the Sedative Effect of Dexmedetomidine

Author:

Kim Youngkyu1,Cho Minju1,Paulson Bjorn1,Kim Sung-Hoon2,Kim Jun Ki13ORCID

Affiliation:

1. Asan Medical Center Biomedical Engineering Research Center, , Seoul 05505, Republic of Korea

2. Asan Medical Center, University of Ulsan College of Medicine Department of Anesthesiology and Pain Medicine, , 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea

3. University of Ulsan, College of Medicine Department of Convergence Medicine, , 88, Olympic-ro 43-Gil, Seoul 05505, Republic of Korea

Abstract

Abstract Among intravital imaging instruments, the intravital two-photon fluorescence excitation microscope has the advantage of enabling real-time 3D fluorescence imaging deep into cells and tissues, with reduced photobleaching and photodamage compared with conventional intravital confocal microscopes. However, excessive motion of organs due to involuntary movement such as breathing may result in out-of-focus images and severe fluorescence intensity fluctuations, which hinder meaningful imaging and analysis. The clinically approved alpha-2 adrenergic receptor agonist dexmedetomidine was administered to mice during two-photon fluorescence intravital imaging to alleviate this problem. As dexmedetomidine blocks the release of the neurotransmitter norepinephrine, pain is suppressed, blood pressure is reduced, and a sedation effect is observed. By tracking the quality of focus and stability of detected fluorescence in two-photon fluorescence images of fluorescein isothiocyanate-sensitized liver vasculature in vivo, we demonstrated that intravascular dexmedetomidine can reduce fluorescence fluctuations caused by respiration on a timescale of minutes in mice, improving image quality and resolution. The results indicate that short-term dexmedetomidine treatment is suitable for reducing involuntary motion in preclinical intravital imaging studies. This method may be applicable to other animal models.

Funder

National Research Foundation of Korea

Asan Institute for Life Sciences, Asan Medical Center

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3