Current state of knowledge: the canine gastrointestinal microbiome

Author:

Hooda Seema,Minamoto Yasushi,Suchodolski Jan S.,Swanson Kelly S.

Abstract

AbstractGastrointestinal (GI) microbes have important roles in the nutritional, immunological, and physiologic processes of the host. Traditional cultivation techniques have revealed bacterial density ranges from 104to 105colony forming units (CFU)/g in the stomach, from 105to 107CFU/g in the small intestine, and from 109to 1011CFU/g in the colon of healthy dogs. As a small number of bacterial species can be grown and studied in culture, however, progress was limited until the recent emergence of DNA-based techniques. In recent years, DNA sequencing technology and bioinformatics have allowed for better phylogenetic and functional/metabolic characterization of the canine gut microbiome. Predominant phyla include Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria. Studies using 16S ribosomal RNA (rRNA) gene pyrosequencing have demonstrated spatial differences along the GI tract and among microbes adhered to the GI mucosa compared to those in intestinal contents or feces. Similar to humans, GI microbiome dysbiosis is common in canine GI diseases such as chronic diarrhea and inflammatory bowel diseases. DNA-based assays have also identified key pathogens contributing to such conditions, including variousClostridium,Campylobacter,Salmonella, andEscherichiaspp. Moreover, nutritionists have applied DNA-based techniques to study the effects of dietary interventions such as dietary fiber, prebiotics, and probiotics on the canine GI microbiome and associated health indices. Despite recent advances in the field, the canine GI microbiome is far from being fully characterized and a deeper characterization of the phylogenetic and functional/metabolic capacity of the GI microbiome in health and disease is needed. This paper provides an overview of recent studies performed to characterize the canine GI microbiome.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3