Well-founded recursion with copatterns and sized types

Author:

ABEL ANDREAS,PIENTKA BRIGITTE

Abstract

AbstractIn this paper, we study strong normalization of a core language based on System ${\mathsf{F}_\omega}$ which supports programming with finite and infinite structures. Finite data such as finite lists and trees is defined via constructors and manipulated via pattern matching, while infinite data such as streams and infinite trees is defined by observations and synthesized via copattern matching. Taking a type-based approach to strong normalization, we track size information about finite and infinite data in the type. We exploit the duality of pattern and copatterns to give a unifying semantic framework which allows us to elegantly and uniformly support both well-founded induction and coinduction by rewriting. The strong normalization proof is structured around Girard's reducibility candidates. As such, our system allows for non-determinism and does not rely on coverage. Since System ${\mathsf{F}_\omega}$ is general enough that it can be the target of compilation for the Calculus of Constructions, this work is a significant step towards representing observation-based infinite data in proof assistants such as Coq and Agda.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference37 articles.

1. Semi-continuous Sized Types and Termination

2. Jones G. & Gibbons J. (1993) Linear-Time Breadth-fFrst Tree Algorithms: An Exercise in the Arithmetic of Folds and Zips. Technical Report, University of Auckland.

3. Analysis of a guard condition in type theory

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric Subtyping for Structural Parametric Polymorphism;Proceedings of the ACM on Programming Languages;2024-01-05

2. Is sized typing for Coq practical?;Journal of Functional Programming;2023

3. Causal computational complexity of distributed processes;Information and Computation;2023-01

4. Constructing Initial Algebras Using Inflationary Iteration;Electronic Proceedings in Theoretical Computer Science;2022-11-03

5. On Coevaluation Behavior and Equivalence;Mathematics;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3