Abstract
Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.
Publisher
Cambridge University Press (CUP)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献