Abstract
AbstractWe obtain a characterisation of the monomial ideals $I\subseteq \mathbb{C}[x_{1},\dots ,x_{n}]$ of finite colength that satisfy the condition $e(I)={\mathcal{L}}_{0}^{(1)}(I)\cdots {\mathcal{L}}_{0}^{(n)}(I)$, where ${\mathcal{L}}_{0}^{(1)}(I),\dots ,{\mathcal{L}}_{0}^{(n)}(I)$ is the sequence of mixed Łojasiewicz exponents of $I$ and $e(I)$ is the Samuel multiplicity of $I$. These are the monomial ideals whose integral closure admits a reduction generated by homogeneous polynomials.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献