Author:
OMIROV B. A.,RAKHIMOV I. S.
Abstract
AbstractIn this paper we propose an approach to classifying a subclass of filiform Leibniz algebras. This subclass arises from the naturally graded filiform Lie algebras. We reconcile and simplify the structure constants of such a class. In the arbitrary fixed dimension case an effective algorithm to control the behavior of the structure constants under adapted transformations of basis is presented. In one particular case, the precise formulas for less than 10 dimensions are given. We provide a computer program in Maple that can be used in computations as well.
Publisher
Cambridge University Press (CUP)
Reference12 articles.
1. Une version non commutative des algèbres de Lie: les algèbres de Leibniz;Loday;L’Ens. Math.,1993
2. [5] Gómez J. R. and Omirov B. A. , On classification of complex filiform Leibniz algebras, arXive:math/0612735 v1 [math.R.A.], 23 Dec 2006.
3. Nilpotent Lie Algebras
4. Low-dimensional filiform Lie algebras
5. Universal enveloping algebras of Leibniz algebras and (co)homology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献