Abstract
The global discretisation error is estimated for strong time discretisations of finite dimensional Ito stochastic differential equations (SDEs) which are Galerkin approximations of a class of parabolic stochastic partial differential equation (SPDE) with a strongly monotone linear operator with eigenvalues λ1 ≤ λ2 ≤ … in its drift term. If an order γ strong Taylor scheme with time-step δ is applied to the N dimensional Ito-Galerkin SDE, the discretisation error is bounded above bywhere [x] is the integer part of the real number x and the constant K depends on the initial value, bounds on the other coefficients in the SPDE and the length of the time interval under consideration.
Publisher
Cambridge University Press (CUP)
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献