Author:
FERRAGUTI ANDREA,MICHELI GIACOMO
Abstract
Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of coprime $m$-tuples of algebraic integers is $1/{\it\zeta}_{K}(m)$, where ${\it\zeta}_{K}$ is the Dedekind zeta function of $K$. This generalises a result found independently by Mertens [‘Ueber einige asymptotische Gesetze der Zahlentheorie’, J. reine angew. Math. 77 (1874), 289–338] and Cesàro [‘Question 75 (solution)’, Mathesis 3 (1883), 224–225] concerning the density of coprime pairs of integers in $\mathbb{Z}$.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Question 75 (solution);Cesàro;Mathesis,1883
2. Heights in number fields
3. Ueber einige asymptotische Gesetze der Zahlentheorie;Mertens;J. reine angew. Math.,1874
4. Question proposée 75;Cesàro;Mathesis,1881
5. Counting algebraic numbers with large height II
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献