Abstract
If f is a p–th integrable function on the circle group and ω(p; f; δ) is its mean modulus of continuity with exponent p then an extended version of the classical theorem of Jackson states the for each positive integer n, there exists a trigonometric polynomial tn of degree at most n for which‖f-tn‖p ≤(p; f; 1/n).In this paper it will be shewn that for G a Hausdorff locally compact abelian group, the algebra L1(G) admits a certain bounded positive approximate unit which, in turn, will be used to prove an analogue of the above result for Lp(G).
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献