Abstract
We introduce the concept of a variety of topological groups and of a free topological group F(X, ) of on a topological space X as generalizations of the analogous concepts in the theory of varieties of groups. Necessary and sufficient conditions for F(X, ) to exist are given and uniqueness is proved. We say the topological group FM,(X) is moderately free on X if its topology is maximal and it is algebraically free with X as a free basis. We show that FM(X) is a free topological group of the variety it generates and that if FM(X) is in then it is topologically isomorphic to a quotient group of F(X, ). It is also shown how well known results on free (free abelian) topological groups can be deduced. In the algebraic theory there are various equivalents of a free group of a variety. We examine the relationships between the topological analogues of these. In the appendix a result similar to the Stone-Čech compactification is proved.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. On free topological groups;Markov;C.R. (Doklady) Acad. Sci. URSS,1941
2. Free topological groups;Graev;Izvestiya Akad. Nauk SSSR. Ser Mat.,1948
3. Free topological groups and infinite direct product topological groups
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献