Author:
DOW ALAN,GUERRERO SÁNCHEZ DAVID
Abstract
In this note we partially answer a question of Cascales, Orihuela and Tkachuk [‘Domination by second countable spaces and Lindelöf ${\rm\Sigma}$-property’, Topology Appl.158(2) (2011), 204–214] by proving that under $CH$ a compact space $X$ is metrisable provided $X^{2}\setminus {\rm\Delta}$ can be covered by a family of compact sets $\{K_{f}:f\in {\it\omega}^{{\it\omega}}\}$ such that $K_{f}\subset K_{h}$ whenever $f\leq h$ coordinatewise.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. MAPS ONTO TIKHONOV CUBES
2. The imbedding of the Stone-Čech compactifications of discrete spaces into bicompacta;Efimov;Dokl. Akad. Nauk USSR,1969
3. A space Cp(X) is dominated by irrationals if and only if it is K-analytic
4. Convergent Free Sequences in Compact Spaces
5. Domination in products;Guerrero Sánchez;Topology Appl.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Mathematical Research of Juan Carlos Ferrando;Springer Proceedings in Mathematics & Statistics;2023
2. Spaces with an M-diagonal;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2019-12-06
3. Bounded sets structure of CpX and quasi‐(DF)‐spaces;Mathematische Nachrichten;2019-09-12
4. Domination by a Polish space of the complement of the diagonal of X implies that X is cosmic;Topology and its Applications;2016-10
5. Compact spaces with a P-diagonal;Indagationes Mathematicae;2016-06