Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura

Author:

Bondarko M. V.

Abstract

AbstractWe describe explicitly the Voevodsky's triangulated category of motives $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$ (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's $\mathcal{D}$(k).We obtain a description of all subcategories (including those of Tate motives) and of all localizations of $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$. We construct a conservative weight complex functor $t:\smash{\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}}\to\smash{K^{\mathrm{b}}(\operatorname{Chow}^{\mathrm{eff}})}$; t gives an isomorphism $K_0(\smash{\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}})\to\smash{K_0(\operatorname{Chow}^{\mathrm{eff}})}$. A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.For a realization D of $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$ we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference37 articles.

1. On the Grayson spectral sequence;Suslin;Tr. Mat. Inst. Steklova,2003

2. Methods of Homological Algebra

3. Mixed Motives

4. 7. Bondarko M. , Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), preprint (available at http://arxiv.org/abs/0704.4003, 2007).

5. 15. Gillet H. and Soulé C. , Weight complexes for arithmetic varieties, unpublished (available at http://www.math.uic.edu/~henri/weightcomplexes_slides.pdf).

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A descent principle for compactly supported extensions of functors;Annals of K-Theory;2023-08-27

2. On the mixed Tate property and the motivic class of the classifying stack of a finite group;Algebra & Number Theory;2022-12-31

3. Motivic Springer theory;Indagationes Mathematicae;2022-01

4. On Chow-weight homology of geometric motives;Transactions of the American Mathematical Society;2021-11-05

5. Motivic integration on the Hitchin fibration;Algebraic Geometry;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3