Abstract
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. Zur Theorie allgemeiner Zetafunctionen
2. Sums involving the values at negative integers of L-functions of quadratic characters
3. A note on the sup norm of Eisenstein series;Young;Quart. J. Math.
4. 31. Zhang, L. , Quantum unique ergodicity of degenerate Eisenstein series on $\text{GL}(n)$ , Preprint, 2016, arXiv:1609:01386.
5. 24. Sarnak, P. , Letter to Morawetz http://www.math.princeton.edu/sarnak.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Norm bounds on Eisenstein series;International Journal of Number Theory;2024-06-13
2. Hyperbolic lattice point counting in unbounded rank;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-06-07
3. Optimal Diophantine exponents for SL(n);Advances in Mathematics;2024-05
4. Fourier coefficients of $\mathrm{Sp}(4)$ Eisenstein series;Acta Arithmetica;2024
5. On the local -Bound of the Eisenstein series;Forum of Mathematics, Sigma;2024