Abstract
Abstract
This paper proposes a switched model to improve the estimation of Euler angles and decrease the inertial navigation system (INS) error, when the centrifugal acceleration occurs. Depending on the situation, one of the subsystems of the proposed switched model is activated for the estimation procedure. During global positioning system (GPS) outages, an extended Kalman filter (EKF) operates in the prediction mode and corrects the INS information, based on the system error model. Compared with previous works, the main advantages of the proposed switched-based adaptive EKF (SAEKF) method are (i) elimination of INS error, during the centrifugal acceleration, and (ii) high accuracy in estimating the attitude and positioning, particularly during GPS outages. To validate the efficiency of the proposed method in various trajectories, an experimental flight test is performed and discussed, involving a microelectromechanical (MEMS)-based INS. The comparative study shows that the proposed method considerably improves the accuracy in various scenarios.
Publisher
Cambridge University Press (CUP)