Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland

Author:

Macdonald Grant J.,Banwell Alison F.ORCID,MacAyeal Douglas R.

Abstract

ABSTRACTSupraglacial lakes are known to trigger Antarctic ice-shelf instability and break-up. However, to date, no study has focused on lakes on Greenland's floating termini. Here, we apply lake boundary/area and depth algorithms to Landsat 8 imagery to analyse the inter- and intraseasonal evolution of supraglacial lakes across Petermann Glacier's (81°N) floating tongue from 2014 to 2016, while also comparing these lakes to those on the grounded ice. Lakes start to fill in June and quickly peak in total number, volume and area in late June/early July in response to increases in air temperatures. However, through July and August, total lake number, volume and area all decline, despite sustained high temperatures. These observations may be explained by the transportation of meltwater into the ocean by a river, and by lake drainage events on the floating tongue. Further, as mean lake depth remains relatively constant during this time, we suggest that a large proportion of the lakes that drain, do so completely, likely by rapid hydrofracture. The mean areas of lakes on the tongue are only ~20% of those on the grounded ice and exhibit lower variability in maximum and mean depth, differences likely attributable to the contrasting formation processes of lakes in each environment.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3