Abstract
Abstract
Background:
Frequently used physical therapy (PT) equipment is difficult to disinfect due to equipment material and shape. The efficacy of standard disinfection of PT equipment is poorly understood.
Methods:
We completed a 2-phase prospective microbiological analysis of fomites used in PT at our hospital from September 2022 to October 2023. For both phases, study fomites were obtained after usage and split into symmetrical halves for sampling. In phase 1, sides were sampled following standard disinfection. In phase 2, sides were randomized 1:1 to intervention or control. Samples were obtained before and after the intervention, a disinfection cabinet using Ultraviolet C (UV-C) and 6% nebulized hydrogen peroxide. We defined antimicrobial-resistant clinically important pathogens (AMR CIP) as methicillin-resistant staphylococcus aureus (MRSA), Vancomycin Resistant Enterococcus (VRE), and Multidrug resistant (MDR)-Gram-negatives and non-AMR CIP as methicillin-sensitive staphylococcus aureus (MSSA), Vancomycin sensitive Enterococcus (VSE), and Gram-negatives. Three assessments were made: 1) contamination following standard disinfection (phase 1), 2) contamination postintervention compared to no disinfection (phase 2) and, 3) contamination following standard disinfection compared to postintervention (phase 1 vs phase 2 intervention).
Results:
The median total colony-forming units (CFU) from 122 study fomite samples was 1,348 (IQR 398–2,365). At the sample level, 52(43%) and 15(12%) of samples harbored any clinically important pathogens (CIPs) or AMR CIPs, respectively. The median CFU was 0 (IQR 0–55) in the intervention group and 977 (409–2,547) in the control group (P < .00001).
Conclusion:
Following standard disinfection, PT equipment remained heavily contaminated including AMR and non-AMR CIPs. Following the intervention, PT equipment was less contaminated and harbored no AMR CIPs compared to control sides supporting the efficacy of the intervention on difficult-to-disinfect PT fomites.
Publisher
Cambridge University Press (CUP)