Author:
Wierach P.,Opitz S.,Kalow S.
Abstract
AbstractSmart materials that are directly embedded in the rotor blade structure are an attractive concept for active blade control. A promising approach is the use of anisotropic piezoelectric strain actuators embedded in the rotor blade skin. Especially in Europe and the US this concept has been intensively investigated over the past years. A major drawback of all configurations studied so far is the high operation voltage of up to 2,000V of state of the art piezoelectric actuators. Within the Green Rotorcraft Project of the European Joint Technology Initiative Clean Sky, a new approach with a low voltage piezoelectric actuation system is investigated to demonstrate the feasibility of this technology.A first major step in this direction was completed by conducting a centrifugal test with a model rotor blade. The objective of the centrifugal test was to demonstrate the performance of the actuation system and the structural concept under centrifugal loads by showing that the expected twist deformation can be achieved at the nominal rotation speed and different actuation frequencies.It was demonstrated that the new actuation system is capable of operating under representative centrifugal loads. In comparison to state-of-the-art actuators (operation voltage 500V to +1500V) the new actuation system (operation voltage -20V to 120V) exhibits higher active twist performance per active area.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献