Supersonic boundary-layer interactions with various micro-vortex generator geometries

Author:

Lee S.,Loth E.

Abstract

Abstract Various types of micro-vortex generators (μVGs) are investigated for control of a supersonic turbulent boundary layer subject to an oblique shock impingement, which causes flow separation. The micro-vortex generators are embedded in the boundary layer to avoid excessive wave drag while still creating strong streamwise vortices to energise the boundary layer. Several different types of µVGs were considered including micro-ramps and micro-vanes. These were investigated computationally in a supersonic boundary layer at Mach 3 using monotone integrated large eddy simulations (MILES). The results showed that vortices generated from μVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary-layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the floor with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named ‘thick-vane’ and ‘split-ramp’, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centreline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3