Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network

Author:

Mehdizadeh N. S.,Sinaei P.

Abstract

Abstract The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt its synaptic weights in the training phase, we used pre-assumed probability density function (PDF) method and considered chemical equilibrium chemistry model to compute the flame characteristics for generating the examples of input-output data sets. In this approach, flow and mixing field results are presented with a non-linear first order k-ε model. The turbulence model is applied in combination with preassumed β-PDF modelling for turbulence-chemistry interaction. The training algorithm for the neural network is based on a back-propagation supervised learning procedure, and the feed-forward multilayer network is incorporated as neural network architecture. The ability of ANN model to represent a highly non-linear system, such as a turbulent non-premixed flame is illustrated, and it can be summarized that the results of modelling of the combustion characteristics using ANN model are satisfactory, and the CPU-time and memory savings encouraging.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3