Spatial standardization of taxon occurrence data—a call to action

Author:

Antell Gawain T.ORCID,Benson Roger B. J.ORCID,Saupe Erin E.ORCID

Abstract

Abstract The fossil record is spatiotemporally heterogeneous: taxon occurrence data have patchy spatial distributions, and this patchiness varies through time. Large-scale quantitative paleobiology studies that fail to account for heterogeneous sampling coverage will generate uninformative inferences at best and confidently draw wrong conclusions at worst. Explicitly spatial methods of standardization are necessary for analyses of large-scale fossil datasets, because nonspatial sample standardization, such as diversity rarefaction, is insufficient to reduce the signal of varying spatial coverage through time or between environments and clades. Spatial standardization should control both geographic area and dispersion (spread) of fossil localities. In addition to standardizing the spatial distribution of data, other factors may be standardized, including environmental heterogeneity or the number of publications or field collecting units that report taxon occurrences. Using a case study of published global Paleobiology Database occurrences, we demonstrate strong signals of sampling; without spatial standardization, these sampling signatures could be misattributed to biological processes. We discuss practical issues of implementing spatial standardization via subsampling and present the new R package divvy to improve the accessibility of spatial analysis. The software provides three spatial subsampling approaches, as well as related tools to quantify spatial coverage. After reviewing the theory, practice, and history of equalizing spatial coverage between data comparison groups, we outline priority areas to improve related data collection, analysis, and reporting practices in paleobiology.

Funder

Leverhulme Trust

Office of the President, University of California

Natural Environment Research Council

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3