Author:
Zhu L.,Lauga E.,Brandt L.
Abstract
AbstractWe use the boundary element method to study the low-Reynolds-number locomotion of a spherical model microorganism in a circular tube. The swimmer propels itself by tangential or normal surface motion in a tube whose radius is of the order of the swimmer size. Hydrodynamic interactions with the tube walls significantly affect the average swimming speed and power consumption of the model microorganism. In the case of swimming parallel to the tube axis, the locomotion speed is always reduced (respectively, increased) for swimmers with tangential (respectively, normal) deformation. In all cases, the rate of work necessary for swimming is increased by confinement. Swimmers with no force dipoles in the far field generally follow helical trajectories, solely induced by hydrodynamic interactions with the tube walls, and in qualitative agreement with recent experimental observations for Paramecium. Swimmers of the puller type always display stable locomotion at a location which depends on the strength of their force dipoles: swimmers with weak dipoles (small $\alpha $) swim in the centre of the tube while those with strong dipoles (large $\alpha $) swim near the walls. In contrast, pusher swimmers and those employing normal deformation are unstable and end up crashing into the walls of the tube. Similar dynamics is observed for swimming into a curved tube. These results could be relevant for the future design of artificial microswimmers in confined geometries.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献