Coalescence of drops with mobile interfaces in a quiescent fluid

Author:

Nemer M. B.,Santoro P.,Chen X.,Bławzdziewicz J.,Loewenberg M.

Abstract

AbstractA study on the axisymmetric near-contact motion of drops with tangentially mobile interfaces under the action of a body force in a quiescent fluid is described. A long-time asymptotic analysis is presented for small-deformation conditions. Under these conditions the drops are nearly spherical, except in the near-contact region, where a flattened thin film forms. According to our analysis, a hydrostatic dome does not form in the near-contact region at long times, in contrast to the assumption underlying all previous analyses of this problem. Instead, the shape of the film in the near-contact region results from the absence of tangential stresses acting on it. As a result, the long-time behaviour of the system is qualitatively different than previously predicted. According to the theory presented herein, the minimum film thickness (rim region) decays with time as ${h}_{m} \sim {t}^{- 4/ 5} $, and the thickness at the centre of the film decays as ${h}_{0} \sim {t}^{- 3/ 5} $, which is a faster decay than predicted by prior analyses based on a hydrostatic dome. Numerical thin-film simulations quantitatively confirm the predictions of our small-deformation theory. Boundary-integral simulations of the full two-drop problem suggest that the theory also describes qualitatively the long-time evolution under finite-deformation conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3