Interplay among unstable modes in films over permeable walls

Author:

Camporeale C.,Mantelli E.,Manes C.

Abstract

AbstractThe stability of open-channel flows (or film flows) has been extensively investigated for the case of impermeable smooth walls. In contrast, despite its relevance in many geophysical and industrial flows, the case that considers a permeable rather than an impermeable wall is almost unexplored. In the present work, a linear stability analysis of a film falling over a permeable and inclined wall is developed and discussed. The focus is on the mutual interaction between three modes of instability, namely, the well-known free-surface and hydrodynamic (i.e. shear) modes, which are commonly observed in open-channel flows over impermeable walls, plus a new one associated with the flow within the permeable wall (i.e. the porous mode). The flow in this porous region is modelled by the volume-averaged Navier–Stokes equations and, at the wall interface, the surface and subsurface flow are coupled through a stress-jump condition, which allows one to obtain a continuous velocity profile throughout the whole flow domain. The generalized eigenvalue problem is then solved via a novel spectral Galerkin method, and the whole spectrum of eigenvalues is presented and physically interpreted. The results show that, in order to perform an analysis with a full coupling between surface and subsurface flow, the convective terms in the volume-averaged equations have to be retained. In previous studies, this aspect has never been considered. For each kind of instability, the critical Reynolds number (${\mathit{Re}}_{c} $) is reported for a wide range of bed slopes ($\theta $) and permeabilities ($\sigma $). The results show that the free-surface mode follows the behaviour that was theoretically predicted by Benjamin and Yih for impermeable walls and is independent of wall permeability. In contrast, the shear mode shows a high dependence on $\sigma $: at $\sigma = 0$ the behaviour of ${\mathit{Re}}_{c} (\theta )$ recovers the well-known non-monotonic behaviour of the impermeable-wall case, with a minimum at $\theta \sim 0. 05\textdegree $. However, with an increase in wall permeability, ${\mathit{Re}}_{c} $ gradually decreases and eventually recovers a monotonic decreasing behaviour. At high values of $\sigma $, the porous mode of instability also occurs. A physical interpretation of the results is presented on the basis of the interplay between the free-surface-induced perturbation of pressure, the increment of straining due to shear with the increase in slope, and the shear stress condition at the free surface. Finally, the paper investigates the extent to which Squire’s theorem is applicable to the problem presented herein.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3