Author:
De Stefano G.,Vasilyev O. V.
Abstract
AbstractThe ability of wavelet multi-resolution analysis to detect and track the energy-containing motions that govern the dynamics of a fluid flow offers a unique hierarchical framework for modelling and simulating turbulence. In this paper, the role of the wavelet thresholding level in wavelet-based modelling and simulation of turbulent flows is systematically examined. The thresholding level controls the relative importance of resolved energetic structures and residual unresolved background flow and, thus, the achieved turbulence resolution. A fully adaptive eddy capturing approach is developed that allows variable-fidelity numerical simulations of turbulence to be performed. The new method is based on wavelet filtering with time-varying thresholding. The thresholding level automatically adapts to the desired turbulence resolution during the simulation. The filtered governing equations supplemented by a localized dynamic energy-based closure model are solved numerically using the adaptive wavelet collocation method. The approach is successfully tested in the numerical simulation of both linearly forced and freely decaying homogeneous turbulence.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献