Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study

Author:

Hawker N. A.,Ventikos Y.

Abstract

AbstractThe interaction of a shockwave with a gas bubble in a liquid medium is of interest in a variety of areas, e.g. shockwave lithotripsy, cavitation damage and the study of sonoluminescence. This study employs a high-resolution front-tracking framework to numerically investigate this phenomenon. The modelling paradigm is validated extensively and then used to explore the parametric space of interest. We provide a comprehensive qualitative analysis of the collapse process, which we categorize into three phases, based on the principal feature dominating each phase. This results in the characterization of numerous previously unidentified features important in the evolution of the process and in the emergence of peak temperatures and pressures. For example, we discover that the peak pressure does not occur as a result of the impact of the main transverse jet (also called the re-entrant jet) but later in the collapse. We perform fully three-dimensional simulations, showing that three-dimensional instabilities are limited to the small-scale details of collapse, and continue by comparing collapse of cylindrical and spherical bubbles. We detail a parametric investigation varying the shock strength from 100 MPa to 100 GPa. A counter-intuitive discovery is that the maximum gas density decreases with increasing shock strength.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3