Closed-loop control of unsteadiness over a rounded backward-facing step

Author:

Barbagallo Alexandre,Dergham Gregory,Sipp Denis,Schmid Peter J.,Robinet Jean-Christophe

Abstract

AbstractThe two-dimensional, incompressible flow over a rounded backward-facing step at Reynolds number $\mathit{Re}= 600$ is characterized by a detachment of the flow close to the step followed by a recirculation zone. Even though the flow is globally stable, perturbations are amplified as they are convected along the shear layer, and the presence of upstream random noise renders the flow unsteady, leading to a broadband spectrum of excited frequencies. This paper is aimed at suppressing this unsteadiness using a controller that converts a shear-stress measurement taken from a wall-mounted sensor into a control law that is supplied to an actuator. A comprehensive study of various components of closed-loop control design – covering sensor placement, choice and influence of the cost functional, accuracy of the reduced-order model, compensator stability and performance – shows that successful control of this flow requires a judicious balance between estimation speed and estimation accuracy, and between stability limits and performance requirements. The inherent amplification behaviour of the flow can be reduced by an order of magnitude if the above-mentioned constraints are observed. In particular, to achieve superior controller performance, the estimation sensor should be placed upstream near the actuator to ensure sufficient estimation speed. Also, if high-performance compensators are sought, a very accurate reduced-order model is required, especially for the dynamics between the actuator and the estimation sensor; otherwise, very minute errors even at low energies and high frequencies may render the large-scale compensated linearized simulation unstable. Finally, coupling the linear compensator to nonlinear simulations shows a gradual deterioration in control performance as the amplitude of the noise increases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. MODEL REDUCTION FOR FLUIDS, USING BALANCED PROPER ORTHOGONAL DECOMPOSITION

2. Guaranteed margins for LQG regulators

3. Optimal and robust control and estimation of linear paths to transition

4. Control of turbulent boundary layers

5. 18. Ilak M. 2009 Model reduction and feedback control of transitional channel flow. PhD thesis, Princeton University, Mechanical and Aerospace Engineering.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3