On the flow of buoyant fluid injected into an aquifer with a background flow

Author:

Gunn Iain,Woods Andrew W.

Abstract

AbstractWe study the dispersal of a plume of incompressible buoyant fluid injected into a confined inclined aquifer in which there is a background flow. We assume that, to prevent pressure buildup in the system, there is an outflow from the aquifer, with flux equal to the injection flux, through a producing well. Using the method of characteristics, we identify that the trajectory of the plume of injected fluid depends on the magnitudes of both the injection flux ${Q}_{I} $ and the background aquifer flux ${Q}_{A} $ relative to the buoyancy-driven exchange flow of injected and original fluid within the aquifer ${Q}_{E} $, on the direction of the background aquifer flow, and on whether the producing well lies upslope or downslope from the injecting well. We find the values of the controlling parameters ${Q}_{I} / {Q}_{E} $ and ${Q}_{A} / {Q}_{E} $ for which all injected fluid flows up-dip, for which the injected fluid partitions into a component moving up-dip and a component moving down-dip, and for which all injected fluid flows down-dip. A key learning from the analysis is that there may be very different plume trajectories when a buoyant fluid is injected into a confined, inclined aquifer, and prediction of the trajectory depends on knowledge of the background flow as well as the injection rate and location of the producing wells. In the process of ${\mathrm{CO} }_{2} $ sequestration, this range of initial plume geometries can inform analysis of longer-term geological storage and assessment of the risk of activating different possible leakage pathways to the surface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3