Short-wave instability of an elastic plate in supersonic flow in the presence of the boundary layer

Author:

Bondarev Vsevolod,Vedeneev Vasily

Abstract

Panel flutter is a dangerous aeroelastic instability of the skin panels of supersonic flight vehicles. Though the linear stability of panels in uniform flow has been studied in detail, the influence of the boundary layer is still an open question. Most studies of panel flutter in the presence of the boundary layer are devoted to the ($1/7$)th-power velocity law and yield a stabilising effect of the boundary layer. Recently, Vedeneev (J. Fluid Mech., vol. 736, 2013, pp. 216–249) considered arbitrary velocity and temperature profiles and showed that, for a generalised convex boundary layer profile, a decrease of the growth rates of ‘supersonic’ perturbations (responsible for single-mode panel flutter) is accompanied by destabilisation of ‘subsonic’ perturbations that are neutral in uniform flow. However, this result is not self-consistent, as the long-wave expansion for solutions of the Rayleigh equation was used, whereas subsonic perturbations, generally speaking, cannot be considered as long waves. More surprising results are obtained for the boundary layer profile with a generalised inflection point, where the effect of the layer is destabilising even for ‘supersonic’ perturbations, and such waves can also have short lengths. In order to overcome this inconsistency, in this paper, we solve the Rayleigh equation numerically and investigate the stability of short-wave perturbation of the elastic plate in the presence of the boundary layer. As before, two problem formulations are investigated. First, we study running waves in an infinite plate. Second, we analyse eigenmodes of the plate of large finite length and use Kulikovskii’s global instability criterion. Based on the results of calculations, we confirm that the effect of the boundary layer with a generalised inflection point can be essentially destabilising. On the other hand, for generalised convex boundary layers, calculations show that, unlike the prediction of the long-wave approximation, the finite plate is fully stabilised for sufficiently thick boundary layers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3