Settling of heated particles in homogeneous turbulence

Author:

Frankel Ari,Pouransari H.,Coletti F.,Mani A.

Abstract

We study the case of inertial particles heated by thermal radiation while settling by gravity through a turbulent transparent gas. We consider dilute and optically thin regimes in which each particle receives the same heat flux. Numerical simulations of forced homogeneous turbulence are performed taking into account the two-way coupling of both momentum and temperature between the dispersed and continuous phases. Particles much smaller than the smallest flow scales are considered and the point-particle approximation is adopted. The particle Stokes number (based on the Kolmogorov time scale) is of order unity, while the nominal settling velocity is up to an order of magnitude larger than the Kolmogorov velocity, marking a critical difference with previous two-way coupled simulations. It is found that non-heated particles enhance turbulence when their settling velocity is sufficiently high compared to the Kolmogorov velocity. Energy spectra show that the non-heated particle settling impacts both the very small and very large flow scales, while the intermediate scales are weakly affected. When heated, particles shed plumes of buoyant gas, further modifying the turbulence structure. At the considered radiation intensities, clustering is strong but the classic mechanism of preferential concentration is modified, while preferential sweeping is eliminated or even reversed. Particle heating also causes a significant reduction of the mean settling velocity, which is caused by rising buoyant plumes in the vicinity of particle clusters. The turbulent kinetic energy is affected non-monotonically as the radiation intensity is increased due to the competing effects of the downward gravitational force and the upward buoyancy force. The thermal radiation influences all scales of the turbulence. The effects of settling and buoyancy on the turbulence anisotropy are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3