Evidence for Raupach et al.'s mixing-layer analogy in deep homogeneous urban-canopy flows

Author:

Zhang Wen,Zhu XiaoweiORCID,Yang Xiang I AORCID,Wan MinpingORCID

Abstract

The mixing-layer analogy is due to Raupach, Finnigan & Brunet (Boundary-Layer Meteorol., vol. 25, 1996, pp. 351–382). In the analogy, the flow in the roughness sublayer of a homogeneous deep vegetation canopy boundary layer is analogous to a plane mixing layer rather than a surface layer. Evidence for the analogy includes the inflected velocity profile, which resembles the velocity profile in a plane mixing layer, and, most notably, the following estimate as a result of the Kelvin–Helmholtz instability: $\varLambda _x=8.1L_s$ , where $\varLambda _x$ is the spacing of the large-scale eddies, and $L_s$ is the shear length. The mixing-layer analogy has been very successful in vegetation canopy flow research, but has received only limited support in urban-canopy flow research. This work revisits Raupach et al.'s mixing-layer analogy, and we present the evidence for the mixing-layer analogy in urban-canopy flows: the exponential velocity profile in the canopy layer, i.e. $(U-U_c)/(U_h-U_c)=\exp (z/L_m)$ , and $L_m\sim [(U_h/U_c-1)(U_h/U_c+3)]^{-1}$ . Here, $z$ is the vertical coordinate, $L_m$ is the attenuation length and is a measure of the largest eddy in the canopy layer, $U_h$ is the wind speed at the canopy crest and $U_c$ is the velocity in the inactive layer. We conduct direct numerical simulations of various deep homogeneous urban-canopy flows and test the above two scalings. We also discuss why Raupach et al.'s analogy has not seen as many successes in urban-canopy flows as in vegetation canopy flows.

Funder

Guangdong Science and Technology Department

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3