Abstract
The study concerns a slender, heavy body moving with streamwise velocity in a boundary layer. Modelling assumptions on body size reduce the governing equations for the body motion to a pair of nonlinear integro-differential equations (IDEs) which displays a wide range of distinguished behaviours, including eventual collision with the wall (‘crash’), escape to infinity (‘fly away’) and repeatedly travelling far from the wall and back again without ever colliding or escaping (‘bouncing’). The paper gives a survey of the variety of behaviour, as well as asymptotic analysis and insight into each category of fluid/body interaction and the conditions under which crash, fly away and bouncing occur.
Funder
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Reference36 articles.
1. Petrie, H.L. , Morris, P.J. , Bajwa, A.R. & Vincent, D.C. 1993 Transition induced by fixed and freely convecting spherical particles in laminar boundary layers. Tech. Rep. Pennsylvania State University, University Park Applied Research Lab.
2. Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate
3. On Dynamic Interactions Between Body Motion and Fluid Motion
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献