Revisiting wind wave growth with fully coupled direct numerical simulations

Author:

Wu JiarongORCID,Popinet StéphaneORCID,Deike LucORCID

Abstract

We investigate wind wave growth by direct numerical simulations solving for the two-phase Navier–Stokes equations. We consider the ratio of the wave speed$c$to the wind friction velocity$u_*$from$c/u_*= 2$to 8, i.e. in the slow to intermediate wave regime; and initial wave steepness$ak$from 0.1 to 0.3; the two being varied independently. The turbulent wind and the travelling, nearly monochromatic waves are fully coupled without any subgrid-scale models. The wall friction Reynolds number is 720. The novel fully coupled approach captures the simultaneous evolution of the wave amplitude and shape, together with the underwater boundary layer (drift current), up to wave breaking. The wave energy growth computed from the time-dependent surface elevation is in quantitative agreement with that computed from the surface pressure distribution, which confirms the leading role of the pressure forcing for finite amplitude gravity waves. The phase shift and the amplitude of the principal mode of surface pressure distribution are systematically reported, to provide direct evidence for possible wind wave growth theories. Intermittent and localised airflow separation is observed for steep waves with small wave age, but its effect on setting the phase-averaged pressure distribution is not drastically different from that of non-separated sheltering. We find that the wave form drag force is not a strong function of wave age but closely related to wave steepness. In addition, the history of wind wave coupling can affect the wave form drag, due to the wave crest shape and other complex coupling effects. The normalised wave growth rate we obtain agrees with previous studies. We make an effort to clarify various commonly adopted underlying assumptions, and to reconcile the scattering of the data between different previous theoretical, numerical and experimental results, as we revisit this longstanding problem with new numerical evidence.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of viscosity on wind-driven gravitation waves;Physics of Fluids;2024-09-01

2. Energetic inception of breaking in surface gravity waves under wind forcing;Physical Review Fluids;2024-05-13

3. Capillary Processes in Extraterrestrial Contexts;Journal of Geophysical Research: Planets;2024-05

4. Evolution of wind-induced wave groups in water of finite depth;Journal of Fluid Mechanics;2024-04-12

5. Spatial growth rates of young wind waves under steady wind forcing;Journal of Fluid Mechanics;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3