The effect of slip on the development of flow separation due to a bump in a channel

Author:

Ceccacci SilviaORCID,Calabretto Sophie A.W.ORCID,Thomas ChristianORCID,Denier James P.ORCID

Abstract

A numerical study on the effect of surface slip on the flow in a constricted channel is presented, with the aim of exploring the use of surface slip to control flow separation. Our focus is on two-dimensional flow in a channel over a bump, with a fixed aspect ratio, upon which a Robin-type slip boundary condition is imposed. When the channel walls are fully no-slip, such a flow is known to develop a region of separation behind the bump, at sufficiently large Reynolds numbers. The effect of slip on the separation bubble dynamics occurring behind the bump is investigated, for Reynolds numbers $2000$ and $4000$ . It is shown that surface slip (i) attenuates the intensity of separation as it diminishes the minimum of the streamwise velocity within the recirculation region; (ii) delays the onset of flow separation, shifting it downstream, along the bump, and (iii) reduces the dimensions of the separation bubble behind the bump, allowing the flow to reattach sooner. Ultimately, slip inhibits separation, with both the points of separation and reattachment coalescing, for a slip length $\lambda$ of approximately $0.2$ .

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference26 articles.

1. The role of surface texturing on the physics of boundary layer separation over a bump

2. Influence of slip on the dynamics of two-dimensional wakes

3. An atomistic model for the Navier slip condition

4. Fabrication of superhydrophobic surfaces with Cassie–Baxter state;Chang;J. Dispers. Sci. Technol.,2020

5. Memoire sur les lois du mouvement des fluids;Navier;Mem. Acad. Sci. Inst. Fr.,1823

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3