The near-field shape and stability of a porous plume

Author:

Benham Graham P.ORCID

Abstract

When a fluid is injected into a porous medium saturated with an ambient fluid of a greater density, the injected fluid forms a plume that rises upwards due to buoyancy. In the near field of the injection point, the plume adjusts its speed to match the buoyancy velocity of the porous medium, either thinning or thickening to conserve mass. These adjustments are the dominant controls on the near-field plume shape, rather than mixing with the ambient fluid, which occurs over larger vertical distances. In this study, we focus on the plume behaviour in the near field, demonstrating that for moderate injection rates, the plume will reach a steady state, whereby it matches the buoyancy velocity over a few plume width scales from the injection point. However, for very small injection rates, an instability occurs in which the steady plume breaks apart due to the insurmountable density contrast with the surrounding fluid. The steady shape of the plume in the near field depends only on a single dimensionless parameter, which is the ratio between the inlet velocity and the buoyancy velocity. A linear stability analysis is performed, indicating that for small velocity ratios, an infinitesimal perturbation can be constructed that becomes unstable, whilst for moderate velocity ratios, the shape is shown to be stable. Finally, we comment on the application of such flows to the context of CO $_2$ sequestration in porous geological reservoirs.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropy distorts the spreading of a fixed volume porous gravity current;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3