Sediment and water geochemistry record of water-rock interactions in King George Island, Antarctic Peninsula

Author:

Gunes YagmurORCID,Balci NurgulORCID

Abstract

AbstractWe used a multidisciplinary approach integrating major, trace and rare earth element geochemistry, mineralogy of rocks and sediments along with the ionic composition of water reservoirs of Admiralty Bay, King George Island, to evaluate the record of water-rock interactions under Maritime Antarctic conditions. Our results showed that the ionic compositions of the streams and meltwaters predominantly reflect the atmospheric inputs, while lake waters have higher Na/Cl, Ca/Mg and HCO3/Cl ratios related to chemical weathering in lake sediments, but this did not allow for distinguishing purely silicate sources. Consistent with the trace and rare earth element data, various alteration indices and Index of Compositional Variability values denote the low degree of chemical weathering in the lake sediments. The records from the previously unexplored Mud Lake and Upper Lake suggest that the lakes of Admiralty Bay are better places to trace the impacts of a succession of environmental changes that have occurred in the watershed, while the stream channel sediments, when accompanied by water chemistry data, may provide a more representative composition of the source rocks than the lake sediments. These findings may help revealing the intensity of contemporary weathering in a colder climate with relatively few mineralogical changes accompanied by a lesser degree of elemental loss.

Funder

ITU Scientific Research Projects Division

Presidency of The Republic of Turkey, Ministry of Industry and Technology

TUBITAK

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3