Low-temperature investigation of residual water bound in free-living Antarctic Prasiola crispa

Author:

Bacior MagdalenaORCID,Harańczyk Hubert,Nowak Piotr,Kijak Paulina,Marzec Monika,Fitas Jakub,Olech Maria

Abstract

AbstractAntarctic algae are extremophilic organisms capable of surviving harsh environmental conditions such as low temperatures and deep dehydration. Although these algae have various adaptations for life in extreme environments, the majority of the molecular mechanisms behind their resistance to dehydration and freezing are not yet fully understood. The aim of our research was to observe the behaviour of bound water freezing in the free-living Antarctic alga Prasiola crispa. One way to avoid frost damage involves deep dehydration of the algal thallus. For that reason, a detailed analysis of water freezing at different sample hydration levels was carried out. Nuclear magnetic resonance investigation revealed two types of water immobilization: cooperative bound water freezing for samples with sample hydration levels above Δm/m0 = 0.40 and non-cooperative bound water immobilization for lower thallus hydration levels. In the differential scanning calorimetry experiment, 2-h incubation at -20°C suggested the diffusion and final binding of supercooled water to the ice nuclei and a lower hydration level threshold, at which ice formation could be observed (Δm/m0 = 0.21). Our research provides a new perspective on water sorption and freezing in Antarctic algae, which may be important not only in biological systems, but also in such novel materials as metal-organic frameworks or covalent organic frameworks.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3