Organic-walled microfossils from the north-west Weddell Sea, Antarctica: records from surface sediments after the collapse of the Larsen-A and Prince Gustav Channel ice shelves

Author:

Pieńkowski Anna J.,Marret Fabienne,Scourse James D.,Thomas David N.

Abstract

AbstractSurface sediments from six box cores along the north-eastern Antarctic Peninsula document the dinoflagellate cyst (= dinocyst) and other non-pollen palynomorph (NPP) content soon after overlying ice shelves collapsed. Prince Gustav Channel (PGC) and Larsen-A (LA) areas exhibited markedly different dinocyst abundances, concentrations being low in LA (0–20 cysts g-1) and high in PGC (2600–9100 cysts g-1, average: c. 3800 cysts g-1). Since similar water masses impact both areas, differences may be due to low biological productivity, limited sediment accumulation, and/or restricted fine-grain deposition at Larsen-A. Islandinium minutum (Harland & Reid in Harland et al.) Head et al. dominated dinocyst assemblages, occurring as both excysted and encysted forms (lesser abundance). Other taxa (Echinidinium cf. transparantum Zonneveld, Impagidinium pallidum Bujak, Bitectatodinium tepikiense Wilson, Operculodinium centrocarpum Wall & Dale, Brigantedinium spp., Selenopemphix antarctica Marret & de Vernal, Polykrikos? sp. A, and Polykrikos schwartzii Bütschli) were rare. Such assemblage composition is unusual compared to previously published Southern Ocean data, but may be specific to ice shelf and/or recently ice-free environments. Alternatively, it may be attributable to excessive production facilitated by environmental factors and/or abundant food, or similar cyst morphologies produced by different dinoflagellates. Accompanying NPPs included zooplankton remains, acritarchs, and freshwater algae. Tintinnid loricae were most abundant (max. 800 g-1), followed by foraminiferal linings (max. 320 g-1), and the acritarch Palaeostomocystis fritilla (Bujak) Roncaglia (max. 150 g-1). Collectively, NPPs were more abundant in PGC compared to LA samples.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3