Effects of Starch Encapsulation on Clomazone and Atrazine Movement in Soil and Clomazone Volatilization

Author:

Mervosh Todd L.,Stoller Edward W.,Simmons F. William,Ellsworth Timothy R.,Sims Gerald K.

Abstract

The effects of formulation on clomazone volatilization and transport through soil were studied. After 22 days of leaching under unsaturated flow in 49-cm long intact soil cores, greater clomazone movement was observed in Plainfield sand than in Cisne silt loam or Drummer silty clay loam soils. Soil clomazone concentrations resulting in injury to oats occurred throughout Plainfield soil cores but were restricted to the upper 14 cm of Cisne and Drummer soils. In addition, clomazone was detected in the leachate from Plainfield soil only. In a similar study with Plainfield sand cores, clomazone was less mobile than atrazine; encapsulation of the herbicides in starch granules did not affect clomazone movement but greatly decreased atrazine movement from the soil surface. Similarly, starch encapsulation did not affect bioavailability of clomazone but did reduce bioavailability of atrazine. In a laboratory study with continual air flow, volatilization of clomazone applied to the soil surface was reduced by encapsulation in starch and starch/clay granules. Clomazone volatilization was not affected by soil water content within a range of 33 to 1500 kPa water tension. Following soil saturation with water, clomazone volatilization from both liquid and granular formulations increased. Granule size appeared to have a greater impact than granule composition on clomazone volatilization.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oleic Acid-PVA Based Amphiphilic Polymer Micelles for Vitamin D Encapsulation;Journal of the Turkish Chemical Society Section A: Chemistry;2023-11-11

2. Methods for nanoencapsulation;Green Sustainable Process for Chemical and Environmental Engineering and Science;2023

3. Evaluating methods and factors that affect dicamba volatility;Advances in Weed Science;2022

4. Research on the Development of Microcapsules and Their Potential Applications in Tibet Plateau;IOP Conference Series: Earth and Environmental Science;2021-06-01

5. The preparation of prochloraz pH-responsive nanocapsules by the Pickering emulsion polymerization method and the study of their performance;RSC Advances;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3