A Model of Competition for Light Between Peanut (Arachis hypogaea) and Broadleaf Weeds

Author:

Barbour James C.,Bridges David C.

Abstract

A model of competition for light between peanut and three broadleaf weed species has been developed to run with the PNUTGRO model. The model simulates shading of the peanut canopy by reducing the total daily PAR received by the peanuts in a manner that realistically represents timing and quantity of light capture by the weeds. Data were collected in nursery plots of Florida beggarweed, sicklepod, and wild poinsettia in 1989, 1990, and 1991. These data provided the values for the critical parameters: maximum attenuation of PAR by the weed, time when the weed overtops the peanut canopy, time when maximum attenuation is reached, and the distance of influence of the weed. Florida beggarweed overtopped the peanut canopy 52 DAP, and reduced PAR reaching the peanuts 45% by 73 DAP. Sicklepod overtopped the peanut canopy 42 DAP and reached an attenuation of 41% 79 DAP. Wild poinsettia overtopped the peanut canopy 44 DAP, and had an attenuation value of 39% 85 DAP. The distances of influence were 162, 150, and 192 cm for Florida beggarweed, sicklepod, and wild poinsettia, respectively. Observed yield losses in the distance of influence were 26, 27, and 22%, respectively. The model predictions accounted for at least 90% of the yield losses observed in field studies. The model also proved capable of simulating competitive differences between morphologically and phenologically different populations of Florida beggarweed. Simulation models will play an important role in reducing the expenditure of time and resources required to document yield losses due to weeds in peanuts.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3