Author:
BEZHANISHVILI GURAM,GABELAIA DAVID,LUCERO-BRYAN JOEL
Abstract
AbstractIt is a classic result (McKinsey & Tarski, 1944; Rasiowa & Sikorski, 1963) that if we interpret modal diamond as topological closure, then the modal logic of any dense-in-itself metric space is the well-known modal system S4. In this paper, as a natural follow-up, we study the modal logic of an arbitrary metric space. Our main result establishes that modal logics arising from metric spaces form the following chain which is order-isomorphic (with respect to the ⊃ relation) to the ordinal ω + 3:$S4.Gr{z_1} \supset S4.Gr{z_2} \supset S4.Gr{z_3} \supset \cdots \,S4.Grz \supset S4.1 \supset S4.$It follows that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable.
Publisher
Cambridge University Press (CUP)
Subject
Logic,Philosophy,Mathematics (miscellaneous)
Reference10 articles.
1. Modal Logic
2. Euclidean Hierarchy in Modal Logic
3. The Algebra of Topology
4. The theory of representations for Boolean algebras;Stone;Transactions of the American Mathematical Society,1936
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献