Abstract
AbstractWe prove a Freed–Uhlenbeck style generic smoothness theorem for the moduli space of solutions to the Vafa–Witten equations on a closed symplectic four-manifold by using a method developed by Feehan for the study of the PU(2)-monopole equations on smooth closed four-manifolds. We introduce a set of perturbation terms to the Vafa–Witten equations, and prove that the moduli space of solutions to the perturbed Vafa–Witten equations on a closed symplectic four-manifold for the structure group SU(2) or SO(3) is a smooth manifold of dimension zero for a generic choice of the perturbation parameters.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献